The Ongoing Evolution of 3D Printing and Additive Manufacturing

Authors

  • Karan Paul

    Assistant Professor, Department of Civil Engineering, Sri Sukhmani Institute of Engineering & Technology, Derabassi Distt. S.A.S. Nagar Mohali (Punjab)
    Author
  • Devender Singh

    Author
  • Sunny Kumar

    Author

DOI:

https://doi.org/10.64200/n4tqdv90

Keywords:

3D printing, additive manufacturing, materials engineering, bioprinting, interdisciplinary cooperation

Abstract

This paper explores the ongoing development of 3D printing from a multidisciplinary viewpoint, focusing on the transformative potential of additive manufacturing. Experts in materials engineering, process optimization, bioprinting, and computational modeling collaborated to test advanced materials such as PolyBlend-X, BioInk Plus, MetalFusion Alloy, and FlexiPoly using state-of-the-art printing systems. The work covered a broad set of applications, including mechanical gears, bioprinted scaffolds, aerospace components, and wearable designs. The results showed clear improvements, with mechanical strength increasing by 25 percent, cell encapsulation efficiency by 15 percent, and overall weight in aerospace parts reduced by 30 percent. Wearable prototypes also demonstrated a 20 percent gain in flexibility. These outcomes highlight the growing impact of additive manufacturing across engineering, bioprinting, and aerospace, pointing to a meaningful shift in how materials are designed and produced.

References

1. Dias, S.; Espadinha-Cruz, P.; Matos, F. A Porter’s Five Forces Model Proposal for Additive Manufacturing Technology: A Case Study in Portuguese Industry. Procedia Comput Sci2022, 217, 165–176, doi:10.1016/j.procs.2022.12.212.

2. Mangano, F.G.; Cianci, D.; Pranno, N.; Lerner, H.; Zarone, F.; Admakin, O. Trueness, Precision, Time-Efficiency and Cost Analysis of Chairside Additive and Subtractive versus Lab-Based Workflows for the Manufacture of Single Crowns: An in Vitro Study. J Dent2023, 104792, doi:10.1016/J.JDENT.2023.104792.

3. Bernard, A.; Kruth, J.P.; Cao, J.; Lanza, G.; Bruschi, S.; Merklein, M.; Vaneker, T.; Schmidt, M.; Sutherland, J.W.; Donmez, A.; et al. Vision on Metal Additive Manufacturing: Developments, Challenges and Future Trends. CIRP J Manuf Sci Technol2023, 47, 18–58, doi:10.1016/j.cirpj.2023.08.005.

4. Kumar, N.; Bhavsar, H.; Mahesh, P.V.S.; Srivastava, A.K.; Bora, B.J.; Saxena, A.; Dixit, A.R. Wire Arc Additive Manufacturing – A Revolutionary Method in Additive Manufacturing. Mater Chem Phys2022, 285, doi:10.1016/j.matchemphys.2022.126144.

5. Mojabi, S.; Afsahi, N.; Naseri, N. Additive Manufacturing: New Paradigm for Developing Water Splitting Systems. Int J Hydrogen Energy2023, doi:10.1016/j.ijhydene.2023.07.023.

6. Pothala, S.; Jagannadha Raju, M.V. Recent Advances of Metallic Bio-Materials in Additive Manufacturing in Biomedical Implants–A Review. Mater Today Proc2023, doi:10.1016/j.matpr.2023.07.109.

7. Colorado, H.A.; Cardenas, C.A.; Gutierrez-Velazquez, E.I.; Escobedo, J.P.; Monteiro, S.N. Additive Manufacturing in Armor and Military Applications: Research, Materials, Processing Technologies, Perspectives, and Challenges. Journal of Materials Research and Technology2023, 27, 3900–3913, doi:10.1016/j.jmrt.2023.11.030.

8. Kumar Jha, K.; Kesharwani, R.; Mishra, R.; Imam, M. A Clarification on Local Microstructural Inhomogeneity in Friction Stir Additively Manufactured Functionally Graded Composite Materials. Mater Today Proc2023, doi:10.1016/j.matpr.2023.11.071.

9. Mobarak, M.H.; Islam, M.A.; Hossain, N.; Al Mahmud, M.Z.; Rayhan, M.T.; Nishi, N.J.; Chowdhury, M.A. Recent Advances of Additive Manufacturing in Implant Fabrication – A Review. Applied Surface Science Advances2023, 18, doi:10.1016/j.apsadv.2023.100462.

10. Katsigiannis, M.; Pantelidakis, M.; Mykoniatis, K.; Purdy, G. Current Monitoring for a Fused Filament Fabrication Additive Manufacturing Process Using an Internet of Things System. Manuf Lett2023, 35, 933–939, doi:10.1016/j.mfglet.2023.08.013.

11. Kolade, O.; Adegbile, A.; Sarpong, D. Can University-Industry-Government Collaborations Drive a 3-D Printing Revolution in Africa? A Triple Helix Model of Technological Leapfrogging in Additive Manufacturing. Technol Soc2022, 69, doi:10.1016/j.techsoc.2022.101960.

12. Arunmozhi, B.; Sudhakarapandian, R.; Sultan Batcha, Y.; Rajay Vedaraj, I.S. An Inferential Analysis of Stainless Steel in Additive Manufacturing Using Bibliometric Indicators. Mater Today Proc2023, doi:10.1016/j.matpr.2023.06.345.

13. Rüther, M.; Klippstein, S.H.; Ponusamy, S.K.; Rüther, T.; Schmid, H.J. Flowability of Polymer Powders at Elevated Temperatures for Additive Manufacturing. Powder Technol2023, 422, doi:10.1016/j.powtec.2023.118460.

14. Afolalu, S.A.; Ikumapayi, O.M.; Abdulkareem, A.; Soetan, S.B.; Emetere, M.E.; Ongbali, S.O. Enviable Roles of Manufacturing Processes in Sustainable Fourth Industrial Revolution - A Case Study of Mechatronics. Mater Today Proc2021, 44, 2895–2901, doi:10.1016/j.matpr.2021.01.099.

15. Srivastava, A.K.; Dixit, V.; Rai, A.K.; Sharma, S.; Sharma, A.; Srivastava, V.S. Study of Microstructural and Mechanical Properties of the Component Produced by Friction Stir Additive Manufacturing (FSAM)-A Review. Mater Today Proc2021, 47, 4142–4147, doi:10.1016/j.matpr.2021.08.339.

16. Madigana, C.S.; Vaddula, A.; Yerramsetti, S.D.; Buddaraju, K.M. Additive Manufacturing of Titanium and Nickel- Based Superalloys: A Review. Mater Today Proc2023, doi:10.1016/j.matpr.2023.07.082.

17. Crapnell, R.D.; Kalinke, C.; Silva, L.R.G.; Stefano, J.S.; Williams, R.J.; Abarza Munoz, R.A.; Bonacin, J.A.; Janegitz, B.C.; Banks, C.E. Additive Manufacturing Electrochemistry: An Overview of Producing Bespoke Conductive Additive Manufacturing Filaments. Materials Today2023, doi:10.1016/j.mattod.2023.11.002.

18. Beltagui, A.; Gold, S.; Kunz, N.; Reiner, G. Special Issue: Rethinking Operations and Supply Chain Management in Light of the 3D Printing Revolution. Int J Prod Econ2023, 255, doi:10.1016/j.ijpe.2022.108677.

19. Lee, J.K.Y.; Gholami, H.; Medini, K.; Salameh, A.A. Hierarchical Analysis of Barriers in Additive Manufacturing Implementation with Environmental Considerations under Uncertainty. J Clean Prod2023, 408, doi:10.1016/j.jclepro.2023.137221.

20. Zhang, L.; Wang, S.; Wang, H.; Wang, J.; Bian, W. Mechanical Properties and Microstructure Revolution of Vibration Assisted Wire Arc Additive Manufacturing 2319 Aluminum Alloy. Materials Science and Engineering: A2023, 885, doi:10.1016/j.msea.2023.145634.

21. Adu-Amankwa, K.; Rentizelas, A.; Daly, A.; Corney, J.; Wodehouse, A.; Peron, M. Decision Considerations for Securing and Managing Intellectual Property within Additive Manufacturing Supply Chains. IFAC-PapersOnLine2023, 56, 6543–6548, doi:10.1016/J.IFACOL.2023.10.304.

22. Abdul Wahed, M.; Imam, M.; Chinthapenta, V.; Jimenez-Melero, E.; Anwar Ali Anshari, M.; Mishra, R.; Paul Webb, R. Additive Friction Stir Processing and Hybrid Metal Additive Manufacturing of High Melting Point Materials: A Review. Mater Today Proc2023, doi:10.1016/j.matpr.2023.08.018.

23. Chalvin, M.; Campocasso, S.; Hugel, V.; Baizeau, T. Layer-by-Layer Generation of Optimized Joint Trajectory for Multi-Axis Robotized Additive Manufacturing of Parts of Revolution. Robot Comput Integr Manuf2020, 65, doi:10.1016/j.rcim.2020.101960.

24. Kanishka, K.; Acherjee, B. Revolutionizing Manufacturing: A Comprehensive Overview of Additive Manufacturing Processes, Materials, Developments, and Challenges. J Manuf Process2023, 107, 574–619, doi:10.1016/j.jmapro.2023.10.024.

25. Additive Manufacturing’s Revolution - Search | ScienceDirect.Com Available online: https://www.sciencedirect.com/search?qs=Additive%20Manufacturing%27s%20Revolution (accessed on 16 December 2023).

26. Singh Tanwar, R.; Jhavar, S. Ti Based Alloys for Aerospace and Biomedical Applications Fabricated through Wire + Arc Additive Manufacturing (WAAM). Mater Today Proc2023, doi:10.1016/J.MATPR.2023.11.121.

27. Shyamlal, C.; Shanmugavel, R.; Jappes, J.T.W.; Nair, A.; Ravichandran, M.; Abuthakeer, S.S.; Prakash, C.; Dixit, S.; Vatin, N.I. Corrosion Behavior of Friction Stir Welded AA8090-T87 Aluminum Alloy. Materials2022, 15, doi:10.3390/MA15155165.

28. Deep, S.; Banerjee, S.; Dixit, S.; Vatin, N.I. Critical Factors Influencing the Performance of Highway Projects: Empirical Evaluation of Indian Projects. Buildings2022, 12, doi:10.3390/BUILDINGS12060849.

29. Upadhyay, G.; Saxena, K.K.; Sehgal, S.; Mohammed, K.A.; Prakash, C.; Dixit, S.; Buddhi, D. Development of Carbon Nanotube (CNT)-Reinforced Mg Alloys: Fabrication Routes and Mechanical Properties. Metals (Basel)2022, 12, doi:10.3390/MET12081392.

30. Singh, P.; Adebanjo, A.; Shafiq, N.; Razak, S.N.A.; Kumar, V.; Farhan, S.A.; Adebanjo, I.; Singh, A.; Dixit, S.; Singh, S.; et al. Development of Performance-Based Models for Green Concrete Using Multiple Linear Regression and Artificial Neural Network. International Journal on Interactive Design and Manufacturing2023, doi:10.1007/S12008-023-01386-6.

31. Makwana, M.; Patel, A.M.; Oza, A.D.; Prakash, C.; Gupta, L.R.; Vatin, N.I.; Dixit, S. Effect of Mass on the Dynamic Characteristics of Single- and Double-Layered Graphene-Based Nano Resonators. Materials2022, 15, doi:10.3390/MA15165551.

Published

2025-12-01

Deprecated: json_decode(): Passing null to parameter #1 ($json) of type string is deprecated in /home/u528617106/domains/jisejournal.com/public_html/plugins/generic/citations/CitationsPlugin.php on line 68

How to Cite

The Ongoing Evolution of 3D Printing and Additive Manufacturing. (2025). Journal of Integrated Sustainability in Engineering, 2(2), 1-8. https://doi.org/10.64200/n4tqdv90

Share


Deprecated: urlencode(): Passing null to parameter #1 ($string) of type string is deprecated in /home/u528617106/domains/jisejournal.com/public_html/plugins/generic/coins/CoinsPlugin.php on line 131