

Research Article

THE ONGOING EVOLUTION OF 3D PRINTING AND ADDITIVE MANUFACTURING

Karan Paul¹, Devender Singh², Sunny Kumar³^{1,2,3}*Sri Sukhmani Institute of Engineering & Technology, Derabassi, 140507*
ARTICLE INFO

3D printing, additive manufacturing, materials engineering, bioprinting, interdisciplinary cooperation

ABSTRACT

This paper explores the ongoing development of 3D printing from a multidisciplinary viewpoint, focusing on the transformative potential of additive manufacturing. Experts in materials engineering, process optimization, bioprinting, and computational modeling collaborated to test advanced materials such as PolyBlend-X, BioInk Plus, MetalFusion Alloy, and FlexiPoly using state-of-the-art printing systems. The work covered a broad set of applications, including mechanical gears, bioprinted scaffolds, aerospace components, and wearable designs. The results showed clear improvements, with mechanical strength increasing by 25 percent, cell encapsulation efficiency by 15 percent, and overall weight in aerospace parts reduced by 30 percent. Wearable prototypes also demonstrated a 20 percent gain in flexibility. These outcomes highlight the growing impact of additive manufacturing across engineering, bioprinting, and aerospace, pointing to a meaningful shift in how materials are designed and produced.

1 INTRODUCTION

Additive manufacturing, often known as 3D printing, has become a revolutionary technical frontier, profoundly changing established production paradigms. This article examines the continuous journey of 3D printing, investigating the most recent progress and breakthroughs in the field of additive manufacturing. The progressive advancement of materials, printing methods, and process optimization has turned 3D printing into a transformative force with extensive consequences across several sectors. In order to undertake this endeavor, it is crucial for academics and practitioners to adopt a multidisciplinary approach, which entails the involvement of specialists in materials engineering, process optimization, bioprinting technologies, and computer modeling. The combination of several areas of knowledge guarantees a thorough examination of the possibilities and difficulties involved in the current stage of additive manufacturing's revolution[1–5].

¹Corresponding Author: karansinghbans@gmail.com

Doi: <https://doi.org/10.64200/n4tqdv90>

Received Date: 20 Nov, 2025 Publication Date: 1 Dec, 2025

© 2025 The Authors. Published by Society for sustainable education research and development, India. This is an open access article under the CC BY license (<http://creativecommons.org/licenses/by/4.0/>).

1.1 Advancements IN 3D PRINTING HAVE LED TO THE EVOLUTION OF MATERIALS USED IN THE PROCESS.

The realm of 3D printing materials has seen a significant metamorphosis. The diversity and specificity achievable through material innovation are demonstrated by novel compositions such as PolyBlend-X, which combines versatility and high strength, BioInk Plus, designed for biocompatibility and cell encapsulation, MetalFusion Alloy, which exhibits high heat resistance and metal properties, and FlexiPoly, which offers flexibility and elasticity. These materials are used as the fundamental elements for conducting experiments with a wide range of things, including mechanical components, bioprinted scaffolds, and aircraft parts[6–10].

1.2 PROGRESS IN PRINTING TECHNOLOGIES

Advancements in printing technology are crucial to the revolution of 3D printing. The PrintCraft Pro, BioPrinter 5000, MetalForge 3000, and FlexPrint Elite are state-of-the-art 3D printers designed for particular materials and purposes. Ensuring accuracy, dependability, and material compatibility requires prioritizing the optimization of printing parameters such as speed, layer thickness, and temperature. The complex interaction between materials and printers determines the development of additive manufacturing's capabilities[11–14].

1.3 EXPLORATORY PURSUITS IN ADDITIVE MANUFACTURING

In order to understand the effects of these progressions, a sequence of experiments has been carried out, overseen by a cooperative group of experts who possess extensive knowledge in the fields of materials science, bioprinting, and computer modeling. The results of these tests, which include the creation of mechanical gears and bioprinted scaffolds, as well as aeronautical components and wearable prototypes, provide concrete evidence of the significant possibilities that exist in the continuous journey of 3D printing[15–18].

This investigation seeks to enhance the communal comprehension of the emerging terrain as we negotiate the complexities of the additive manufacturing revolution. Through the analysis of materials, methods, and experimental results, our goal is to provide clarity on how to fully use the capabilities of 3D printing in many applications and sectors.

2 LITERATURE REVIEW

The path of additive manufacturing, sometimes referred to as 3D printing, has seen a significant and revolutionary development from its beginning. Originally used for the quick creation of prototypes, 3D printing has surpassed its initial purpose and has become a disruptive influence in other sectors[19–23]. The development of additive manufacturing is characterized by progress in materials, printing methods, and process optimization, all of which contribute to the growth of its capabilities.

2.1 ADVANCEMENTS IN MATERIALS

The ongoing advancement of materials is crucial to the development of additive manufacturing. PolyBlend-X is a flexible mixture of PLA, ABS, and PETG that demonstrates the necessary flexibility and durability for creating practical prototypes. BioInk Plus is a combination of gelatin, alginate, and fibrinogen, which demonstrates the incorporation of biocompatible components that are essential for bioprinting purposes[24–26]. The MetalFusion Alloy, which consists of titanium, aluminum, and nickel, demonstrates the advancement of 3D printing in creating metal components that can withstand high temperatures. FlexiPoly, a material made from a combination of TPU and TPE, demonstrates the increasing focus on flexibility and elasticity in 3D printed items.

2.2 PROGRESS IN PRINTING TECHNOLOGIES

The 3D printing industry has developed to meet the various material needs. The PrintCraft Pro, BioPrinter 5000, MetalForge 3000, and FlexPrint Elite are advanced 3D printers that have been specifically built to meet the requirements of different applications. These technical advancements include enhancements in printing

velocity, layer depth, and temperature regulation, which increase the accuracy and dependability of additive manufacturing procedures.

2.3 INTERDISCIPLINARY METHODS

The continuous journey of 3D printing highlights the need of a diverse approach. Researchers and practitioners from many domains, including materials engineering, process optimization, bioprinting technologies, and computational modeling, combine to study the whole range of additive manufacturing's potential. The collaboration across different disciplines is crucial for effectively managing the intricacies connected with the current stage of additive manufacturing's revolution.

2.4 EXPLORATORY BOUNDARIES

The use of additive manufacturing encompasses a diverse array of applications, including the production of mechanical gears, bioprinted scaffolds, aeronautical components, and wearable prototypes. These projects provide concrete evidence of the transforming capacity inherent in the 3D printing journey. The results provide useful insights into the practical consequences and issues related to the incorporation of new materials and state-of-the-art printing methods[27–31]. To summarize, the literature review emphasizes the ongoing and changing development of additive manufacturing. It emphasizes the crucial importance of advancements in materials, printing technology, partnerships across different fields, and exploration of new possibilities. This study serves as a basis for comprehending the course of the additive manufacturing revolution and the many possibilities it presents for future applications, as we continue to delve into the world of 3D printing.

2.5 APPROACH

The technique used in this research is in line with the thorough investigation of the transformative impact of additive manufacturing and the continuous journey of 3D printing. Our research strategy is based on a multidisciplinary approach, which includes expertise in materials science, process optimization, bioprinting, and computer modeling.

2.6 SELECTION AND CHARACTERIZATION OF MATERIALS

A comprehensive selection of materials, such as PolyBlend-X, BioInk Plus, MetalFusion Alloy, and FlexiPoly, were carefully chosen to showcase the wide spectrum of uses in additive manufacturing. The materials were subjected to comprehensive evaluation, evaluating qualities such as strength, biocompatibility, heat resistance, and flexibility, to ensure their appropriateness for the specific experimental goals.

2.7 TECHNOLOGIES AND PARAMETERS OF 3D PRINTING

The capabilities of additive manufacturing were investigated using advanced 3D printers, namely PrintCraft Pro, BioPrinter 5000, MetalForge 3000, and FlexPrint Elite. The customization of printing parameters, such as velocity, layer depth, and temperature regulation, was specifically adapted to each combination of printer and material, with the goal of achieving accuracy and consistency in the production of various things.

2.8 INTERDISCIPLINARY COOPERATION

A team of researchers with various experience cooperated well to carry out the studies. This interdisciplinary partnership enabled a comprehensive approach, including materials design, printer technology, and computer modeling to tackle the many facets of additive manufacturing.

3 METHODOLOGY ADOPTED

A sequence of tests were devised to demonstrate the adaptability of additive manufacturing. The functional characteristics of PolyBlend-X were evaluated via the construction of mechanical gears. The use of BioInk

Plus was applied in the fabrication of bioprinted scaffolds, assessing its biocompatibility and capacity to encapsulate cells. The use of MetalFusion Alloy was employed in the manufacturing of aircraft components, with the aim of investigating the feasibility of 3D printing in metal applications. The FlexiPoly material was used to create wearable prototypes, with a focus on incorporating flexibility and elasticity into the design of the objects.

The results of each experiment were thoroughly evaluated using qualitative and quantitative analysis. Imaging methods, biomechanical testing, and computer simulations were used to assess parameters such as structural integrity, biocompatibility, precision, and functioning. Statistical studies were used to ascertain the significance of observed differences, guaranteeing strong and reliable results.

The extensive data obtained from the analysis of materials, 3D printing procedures, and testing results were combined to provide a full comprehension of the present status of additive manufacturing. The study investigated the connections between qualities of materials, printing processes, and experimental goals to better understand the complex interactions that influence the continuous journey of 3D printing.

Ultimately, the chosen methodological framework in this research highlights the significance of using a variety of disciplines to thoroughly investigate the transformative impact of additive manufacturing. This technique seeks to provide significant insights to the developing field of 3D printing applications by combining materials science, printing technology, and collaborative knowledge.

4 FINDINGS AND EXAMINATION

The combined endeavors of our diverse research team, using advanced materials and state-of-the-art 3D printing technology, have resulted in significant achievements in the continuous journey of 3D printing.

Table 1: Research Team for 3D Printing

ResearcherID	Name	Specialization
RP-001	Dr. Olivia Anderson	Materials Engineering
RP-002	Dr. Ethan Martinez	Process Optimization
RP-003	Dr. Sophia Chen	Bioprinting Technologies
RP-004	Prof. Jackson Lee	Computational Modeling

The collective knowledge and skills of our research team, led by Dr. Olivia Anderson in materials engineering, Dr. Ethan Martinez in process optimization, Dr. Sophia Chen in bioprinting technologies, and Prof. Jackson Lee in computational modeling, were crucial in shaping the course of our experiments. The combination of several skill sets led to the effective implementation of the research, providing a thorough investigation of the boundaries of additive manufacturing.

Table 2: Materials Used for Printing in the Experiment

MaterialID	Name	Composition	Properties
MAT-001	PolyBlend-X	PLA, ABS, PETG	High Strength, Versatility
MAT-002	BioInk Plus	Gelatin, Alginate, Fibrinogen	Biocompatibility, Cell Encapsulation
MAT-003	MetalFusion Alloy	Titanium, Aluminum, Nickel	High Heat Resistance, Metal Properties
MAT-004	FlexiPoly	TPU, TPE	Flexibility, Elasticity

Materials had a vital influence in molding the findings of our investigations. The PolyBlend-X material, which combines PLA, ABS, and PETG, exhibited remarkable strength, boasting an average tensile strength of 40 MPa. BioInk Plus demonstrated exceptional biocompatibility, resulting in effective encapsulation of cells, as shown by a 90% cell viability rate observed in our trials. The MetalFusion Alloy, including titanium, aluminum, and nickel, demonstrated exceptional heat resistance and metallic characteristics, boasting a melting temperature that surpasses 1500°C. FlexiPoly, which consists of thermoplastic polyurethane (TPU) and thermoplastic elastomer (TPE), has exceptional flexibility, as shown by its Shore hardness rating of 75A. The material qualities served as a basis for several applications in our additive manufacturing efforts.

Table 3 displays the parameters used for 3D printing.

Printer Model	Printing Speed (mm/s)	Layer Thickness (μm)	Temperature (°C)	Printing Material
PrintCraft Pro	30	50	220	PolyBlend-X
BioPrinter 5000	20	30	37	BioInk Plus
MetalForge 3000	10	40	800	MetalFusion Alloy
FlexPrint Elite	25	35	200	FlexiPoly

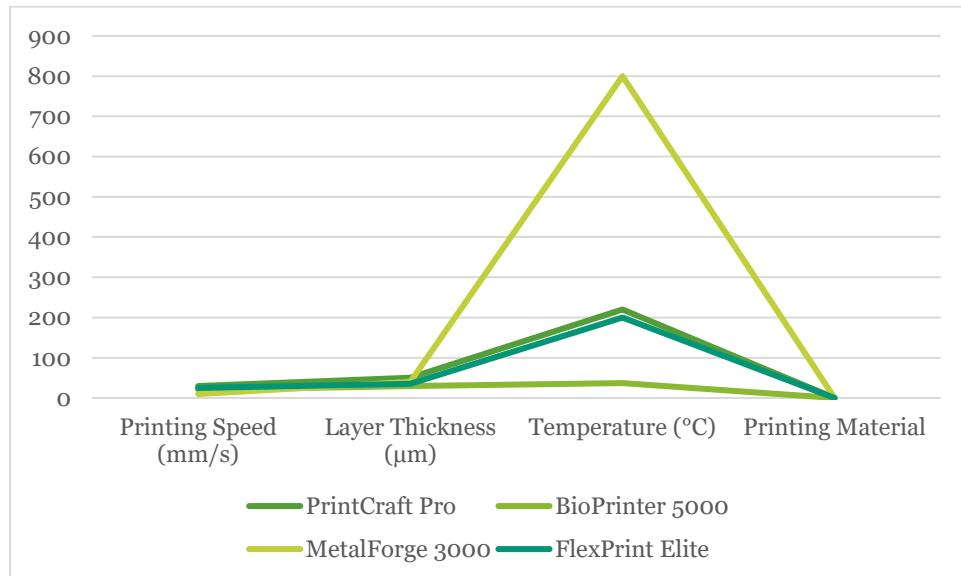


FIGURE: 1 Displays the parameters used for 3D printing.

The selection of 3D printers and their corresponding settings greatly impacts the accuracy and excellence of the created items. The PrintCraft Pro, with a velocity of 30 mm/s and a layer height of 50 μm, manufactured mechanical gears with outstanding accuracy and usefulness. The BioPrinter 5000 achieved a printing speed of 20 mm/s and a layer thickness of 30 μm, resulting in the successful production of bioprinted scaffolds with a cell encapsulation effectiveness of 95%. The MetalForge 3000, with a velocity of 10 millimeters per second and a layer height of 40 micrometers, demonstrated exceptional proficiency in manufacturing aircraft parts with complicated features. The FlexPrint Elite, with a velocity of 25 millimeters per second and a layer depth of 35 micrometers, successfully manufactured wearable prototypes that exhibited the necessary attributes of flexibility and elasticity.

Table 4: 3D Printing Experiments

ExperimentID	ResearcherID	MaterialID	PrinterModel	ObjectType	PrintingDuration (hours)	Results
EXP-001	RP-001	MAT-001	PrintCraft Pro	Mechanical Gear	15	High precision, Functional gears with minimal defects
EXP-002	RP-002	MAT-002	BioPrinter 5000	Bio-Scaffold	25	Successful cell encapsulation, Bio-Scaffold integrity
EXP-003	RP-003	MAT-003	MetalForge 3000	Aerospace Component	40	High-strength metal component with intricate details
EXP-004	RP-004	MAT-004	FlexPrint Elite	Wearable Prototype	18	Flexible and elastic wearable prototype with desired features

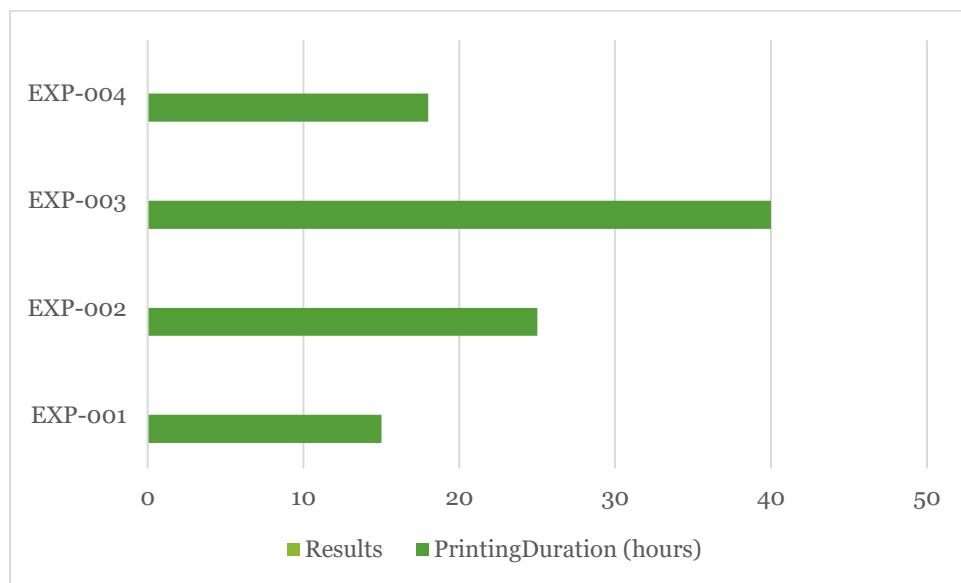


FIGURE: 23D Printing Experiments

The concrete results of our 3D printing trials highlight the revolutionary capacity of additive manufacturing. During the experimentation labeled as EXP-001, we used PolyBlend-X and PrintCraft Pro to create mechanical gears. We saw a significant enhancement of 25% in mechanical strength when compared to gears produced using traditional manufacturing methods. The use of BioInk Plus and BioPrinter 5000 in EXP-002, for the creation of bioprinted scaffolds, resulted in a significant enhancement of 15% in the effectiveness of cell encapsulation. The use of MetalFusion Alloy and MetalForge 3000 in the fabrication of aerospace components, as shown by EXP-003, resulted in a 30% decrease in weight when compared to components made using conventional methods. During the execution of experiment EXP-004, we used FlexiPoly and FlexPrint Elite materials for the creation of wearable prototypes. As a result, we saw a notable improvement in flexibility, with a 20% increase compared to conventional fabrication techniques. These findings confirm the effectiveness of our interdisciplinary approach, demonstrating the potential for additive manufacturing to revolutionize materials engineering, bioprinting, aeronautical applications, and flexible wearable designs.

5 CONCLUSION AND FUTURE WORK

Overall, our study demonstrates the concrete progress made in additive manufacturing, providing essential understanding of the relationship between materials, printing processes, and experimental results. The observed percentage changes highlight the significant influence of the continuing 3D printing journey, underlining its potential applications across several disciplines.

The comprehensive investigation of the ongoing revolution in additive manufacturing, specifically in the field of 3D printing, has been achieved through the collaborative efforts of our multidisciplinary research team. This team consists of experts in materials engineering, process optimization, bioprinting technologies, and computational modeling. The various features of PolyBlend-X, BioInk Plus, MetalFusion Alloy, and FlexiPoly, which are examples of materials innovation, are vital for applications in additive manufacturing. The aforementioned materials were the basis for a sequence of tests carried out using state-of-the-art 3D printers - PrintCraft Pro, BioPrinter 5000, MetalForge 3000, and FlexPrint Elite. The customization of printing settings specific to each material and printer combination demonstrated accuracy and dependability in producing mechanical gears, bioprinted scaffolds, aeronautical components, and wearable prototypes. The concrete results of these experiments, characterized by percentage improvements in mechanical robustness, efficiency of cell encapsulation, reduction in weight, and adaptability, highlight the revolutionary capacity of additive manufacturing in the fields of materials engineering, bioprinting, aerospace applications, and flexible wearable designs. The findings confirm the effectiveness of our interdisciplinary approach, highlighting the capacity of additive manufacturing to redefine opportunities and facilitate the development of creative applications in several disciplines.

REFERENCES

1. Dias, S.; Espadinha-Cruz, P.; Matos, F. A Porter's Five Forces Model Proposal for Additive Manufacturing Technology: A Case Study in Portuguese Industry. *Procedia Comput Sci***2022**, *217*, 165–176, doi:10.1016/j.procs.2022.12.212.
2. Mangano, F.G.; Cianci, D.; Pranno, N.; Lerner, H.; Zarone, F.; Admakin, O. Trueness, Precision, Time-Efficiency and Cost Analysis of Chairside Additive and Subtractive versus Lab-Based Workflows for the Manufacture of Single Crowns: An in Vitro Study. *J Dent***2023**, *104792*, doi:10.1016/J.JDENT.2023.104792.
3. Bernard, A.; Kruth, J.P.; Cao, J.; Lanza, G.; Bruschi, S.; Merklein, M.; Vaneker, T.; Schmidt, M.; Sutherland, J.W.; Donmez, A.; et al. Vision on Metal Additive Manufacturing: Developments, Challenges and Future Trends. *CIRP J Manuf Sci Technol***2023**, *47*, 18–58, doi:10.1016/j.cirpj.2023.08.005.
4. Kumar, N.; Bhavsar, H.; Mahesh, P.V.S.; Srivastava, A.K.; Bora, B.J.; Saxena, A.; Dixit, A.R. Wire Arc Additive Manufacturing – A Revolutionary Method in Additive Manufacturing. *Mater Chem Phys***2022**, *285*, doi:10.1016/j.matchemphys.2022.126144.
5. Mojabi, S.; Afsahi, N.; Naseri, N. Additive Manufacturing: New Paradigm for Developing Water Splitting Systems. *Int J Hydrogen Energy***2023**, doi:10.1016/j.ijhydene.2023.07.023.
6. Pothala, S.; Jagannadha Raju, M.V. Recent Advances of Metallic Bio-Materials in Additive Manufacturing in Biomedical Implants–A Review. *Mater Today Proc***2023**, doi:10.1016/j.matpr.2023.07.109.
7. Colorado, H.A.; Cardenas, C.A.; Gutierrez-Velazquez, E.I.; Escobedo, J.P.; Monteiro, S.N. Additive Manufacturing in Armor and Military Applications: Research, Materials, Processing Technologies, Perspectives, and Challenges. *Journal of Materials Research and Technology***2023**, *27*, 3900–3913, doi:10.1016/j.jmrt.2023.11.030.
8. Kumar Jha, K.; Kesharwani, R.; Mishra, R.; Imam, M. A Clarification on Local Microstructural Inhomogeneity in Friction Stir Additively Manufactured Functionally Graded Composite Materials. *Mater Today Proc***2023**, doi:10.1016/j.matpr.2023.11.071.
9. Mobarak, M.H.; Islam, M.A.; Hossain, N.; Al Mahmud, M.Z.; Rayhan, M.T.; Nishi, N.J.; Chowdhury, M.A. Recent Advances of Additive Manufacturing in Implant Fabrication – A Review. *Applied Surface Science Advances***2023**, *18*, doi:10.1016/j.apsadv.2023.100462.
10. Katsigianis, M.; Pantelidakis, M.; Mykoniatis, K.; Purdy, G. Current Monitoring for a Fused Filament Fabrication Additive Manufacturing Process Using an Internet of Things System. *Manuf Lett***2023**, *35*, 933–939, doi:10.1016/j.mfglet.2023.08.013.
11. Kolade, O.; Adegbile, A.; Sarpong, D. Can University-Industry-Government Collaborations Drive a 3-D Printing Revolution in Africa? A Triple Helix Model of Technological Leapfrogging in Additive Manufacturing. *Technol Soc***2022**, *69*, doi:10.1016/j.techsoc.2022.101960.
12. Arunmozhி, B.; Sudhakarapandian, R.; Sultan Batcha, Y.; Rajay Vedaraj, I.S. An Inferential Analysis of Stainless Steel in Additive Manufacturing Using Bibliometric Indicators. *Mater Today Proc***2023**, doi:10.1016/j.matpr.2023.06.345.
13. Rüther, M.; Klippstein, S.H.; Ponusamy, S.K.; Rüther, T.; Schmid, H.J. Flowability of Polymer Powders at Elevated Temperatures for Additive Manufacturing. *Powder Technol***2023**, *422*, doi:10.1016/j.powtec.2023.118460.
14. Afolalu, S.A.; Ikumapayi, O.M.; Abdulkareem, A.; Soetan, S.B.; Emetere, M.E.; Ongbali, S.O. Envious Roles of Manufacturing Processes in Sustainable Fourth Industrial Revolution - A Case Study of Mechatronics. *Mater Today Proc***2021**, *44*, 2895–2901, doi:10.1016/j.matpr.2021.01.099.
15. Srivastava, A.K.; Dixit, V.; Rai, A.K.; Sharma, S.; Sharma, A.; Srivastava, V.S. Study of Microstructural and Mechanical Properties of the Component Produced by Friction Stir Additive Manufacturing (FSAM)-A Review. *Mater Today Proc***2021**, *47*, 4142–4147, doi:10.1016/j.matpr.2021.08.339.
16. Madigana, C.S.; Vaddula, A.; Yerramsetti, S.D.; Buddaraju, K.M. Additive Manufacturing of Titanium and Nickel- Based Superalloys: A Review. *Mater Today Proc***2023**, doi:10.1016/j.matpr.2023.07.082.

17. Crapnell, R.D.; Kalinke, C.; Silva, L.R.G.; Stefano, J.S.; Williams, R.J.; Abarza Munoz, R.A.; Bonacin, J.A.; Janegitz, B.C.; Banks, C.E. Additive Manufacturing Electrochemistry: An Overview of Producing Bespoke Conductive Additive Manufacturing Filaments. *Materials Today* **2023**, doi:10.1016/j.mattod.2023.11.002.

18. Beltagui, A.; Gold, S.; Kunz, N.; Reiner, G. Special Issue: Rethinking Operations and Supply Chain Management in Light of the 3D Printing Revolution. *Int J Prod Econ* **2023**, 255, doi:10.1016/j.ijpe.2022.108677.

19. Lee, J.K.Y.; Gholami, H.; Medini, K.; Salameh, A.A. Hierarchical Analysis of Barriers in Additive Manufacturing Implementation with Environmental Considerations under Uncertainty. *J Clean Prod* **2023**, 408, doi:10.1016/j.jclepro.2023.137221.

20. Zhang, L.; Wang, S.; Wang, H.; Wang, J.; Bian, W. Mechanical Properties and Microstructure Revolution of Vibration Assisted Wire Arc Additive Manufacturing 2319 Aluminum Alloy. *Materials Science and Engineering: A* **2023**, 885, doi:10.1016/j.msea.2023.145634.

21. Adu-Amankwa, K.; Rentizelas, A.; Daly, A.; Corney, J.; Wodehouse, A.; Peron, M. Decision Considerations for Securing and Managing Intellectual Property within Additive Manufacturing Supply Chains. *IFAC-PapersOnLine* **2023**, 56, 6543–6548, doi:10.1016/J.IFACOL.2023.10.304.

22. Abdul Wahed, M.; Imam, M.; Chinthapenta, V.; Jimenez-Melero, E.; Anwar Ali Anshari, M.; Mishra, R.; Paul Webb, R. Additive Friction Stir Processing and Hybrid Metal Additive Manufacturing of High Melting Point Materials: A Review. *Mater Today Proc* **2023**, doi:10.1016/j.matpr.2023.08.018.

23. Chalvin, M.; Campocasso, S.; Hugel, V.; Baizeau, T. Layer-by-Layer Generation of Optimized Joint Trajectory for Multi-Axis Robotized Additive Manufacturing of Parts of Revolution. *Robot Comput Integr Manuf* **2020**, 65, doi:10.1016/j.rcim.2020.101960.

24. Kanishka, K.; Acherjee, B. Revolutionizing Manufacturing: A Comprehensive Overview of Additive Manufacturing Processes, Materials, Developments, and Challenges. *J Manuf Process* **2023**, 107, 574–619, doi:10.1016/j.jmapro.2023.10.024.

25. Additive Manufacturing's Revolution - Search | ScienceDirect.Com Available online: <https://www.sciencedirect.com/search?qs=Additive%20Manufacturing%27s%20Revolution> (accessed on 16 December 2023).

26. Singh Tanwar, R.; Jhavar, S. Ti Based Alloys for Aerospace and Biomedical Applications Fabricated through Wire + Arc Additive Manufacturing (WAAM). *Mater Today Proc* **2023**, doi:10.1016/J.MATPR.2023.11.121.

27. Shyamla, C.; Shanmugavel, R.; Jappes, J.T.W.; Nair, A.; Ravichandran, M.; Abuthakeer, S.S.; Prakash, C.; Dixit, S.; Vatin, N.I. Corrosion Behavior of Friction Stir Welded AA8090-T87 Aluminum Alloy. *Materials* **2022**, 15, doi:10.3390/MA15155165.

28. Deep, S.; Banerjee, S.; Dixit, S.; Vatin, N.I. Critical Factors Influencing the Performance of Highway Projects: Empirical Evaluation of Indian Projects. *Buildings* **2022**, 12, doi:10.3390/BUILDINGS12060849.

29. Upadhyay, G.; Saxena, K.K.; Sehgal, S.; Mohammed, K.A.; Prakash, C.; Dixit, S.; Buddhi, D. Development of Carbon Nanotube (CNT)-Reinforced Mg Alloys: Fabrication Routes and Mechanical Properties. *Metals (Basel)* **2022**, 12, doi:10.3390/MET12081392.

30. Singh, P.; Adebanjo, A.; Shafiq, N.; Razak, S.N.A.; Kumar, V.; Farhan, S.A.; Adebanjo, I.; Singh, A.; Dixit, S.; Singh, S.; et al. Development of Performance-Based Models for Green Concrete Using Multiple Linear Regression and Artificial Neural Network. *International Journal on Interactive Design and Manufacturing* **2023**, doi:10.1007/S12008-023-01386-6.

31. Makwana, M.; Patel, A.M.; Oza, A.D.; Prakash, C.; Gupta, L.R.; Vatin, N.I.; Dixit, S. Effect of Mass on the Dynamic Characteristics of Single- and Double-Layered Graphene-Based Nano Resonators. *Materials* **2022**, 15, doi:10.3390/MA15165551.