Integrating Traditional and Advanced Precision Machining for Improved Performance
DOI:
https://doi.org/10.64200/2d2qbv68Keywords:
Machining Techniques, Precision Manufacturing, Comparative Analysis, Tool Life, Economic ImplicationsAbstract
This study examines the integration of conventional machining techniques with advanced precision methods, using empirical data to compare their performance and economic impact. Traditional processes such as lathe work, milling, and grinding delivered strong tool life results, with grinding on brass reaching 40 hours. Advanced approaches, including CNC cutting on titanium, showed even greater endurance with tool life extending to 50 hours. Comparative analysis found that CNC milling produced an 8 percent improvement in surface quality over traditional lathe operations. Laser cutting delivered exceptional accuracy, achieving a surface finish roughness 67 percent lower than that of standard grinding. Economic evaluation showed that CNC milling requires higher upfront investment and leads to operating costs that are 40 percent higher. The findings offer a clear view of how traditional and next-generation machining methods differ and complement each other, helping decision-makers refine their manufacturing strategies..
References
1. Deep, S.; Banerjee, S.; Dixit, S.; Vatin, N.I. Critical Factors Influencing the Performance of Highway Projects: Empirical Evaluation of Indian Projects. Buildings2022, 12, doi:10.3390/BUILDINGS12060849.
2. Shyamlal, C.; Shanmugavel, R.; Jappes, J.T.W.; Nair, A.; Ravichandran, M.; Abuthakeer, S.S.; Prakash, C.; Dixit, S.; Vatin, N.I. Corrosion Behavior of Friction Stir Welded AA8090-T87 Aluminum Alloy. Materials2022, 15, doi:10.3390/MA15155165.
3. Upadhyay, G.; Saxena, K.K.; Sehgal, S.; Mohammed, K.A.; Prakash, C.; Dixit, S.; Buddhi, D. Development of Carbon Nanotube (CNT)-Reinforced Mg Alloys: Fabrication Routes and Mechanical Properties. Metals (Basel)2022, 12, doi:10.3390/MET12081392.
4. Singh, P.; Adebanjo, A.; Shafiq, N.; Razak, S.N.A.; Kumar, V.; Farhan, S.A.; Adebanjo, I.; Singh, A.; Dixit, S.; Singh, S.; et al. Development of Performance-Based Models for Green Concrete Using Multiple Linear Regression and Artificial Neural Network. International Journal on Interactive Design and Manufacturing2023, doi:10.1007/S12008-023-01386-6.
5. Makwana, M.; Patel, A.M.; Oza, A.D.; Prakash, C.; Gupta, L.R.; Vatin, N.I.; Dixit, S. Effect of Mass on the Dynamic Characteristics of Single- and Double-Layered Graphene-Based Nano Resonators. Materials2022, 15, doi:10.3390/MA15165551.
6. Kumar, K.; Dixit, S.; ul Haq, M.Z.; Stefanska, A.; Tummala, S.K.; Bobba, P.B.; Kaur, N.; Mohiuddin, M.A. From Homogeneity to Heterogeneity: Designing Functionally Graded Materials for Advanced Engineering Applications. In Proceedings of the E3S Web of Conferences; EDP Sciences, 2023; Vol. 430, p. 01198.
7. Rana, V.S.; Ul Haq, M.Z.; Mathur, N.; Khera, G.S.; Dixit, S.; Singh, S.; Prakash, A.; Viktorovna, G.V.; Soloveva, O. V; Solovev, S.A. Correction: Assortment of Latent Heat Storage Materials Using Multi Criterion Decision Making Techniques in Scheffler Solar Reflector. International Journal on Interactive Design and Manufacturing (IJIDeM)2023, 1.
8. Sharma, V.; Singh, S. Modeling for the Use of Waste Materials (Bottom Ash and Fly Ash) in Soil Stabilization. Mater Today Proc2020, 33, 1610–1614, doi:10.1016/J.MATPR.2020.05.569.
9. Haq, Md.Z.U.; Sood, H.; Kumar, R.; Merta, I. Taguchi-Optimized Triple-Aluminosilicate Geopolymer Bricks with Recycled Sand: A Sustainable Construction Solution. Case Studies in Construction Materials2024, 20, e02780, doi:https://doi.org/10.1016/j.cscm.2023.e02780.
10. Abdul Khalek, R.; Accardi, A.; Adam, J.; Adamiak, D.; Akers, W.; Albaladejo, M.; Al-bataineh, A.; Alexeev, M.G.; Ameli, F.; Antonioli, P.; et al. Science Requirements and Detector Concepts for the Electron-Ion Collider: EIC Yellow Report. Nucl Phys A2022, 1026, doi:10.1016/j.nuclphysa.2022.122447.
11. Cavalli, M.C.; Chen, D.; Chen, Q.; Chen, Y.; Falchetto, A.C.; Fang, M.; Gu, H.; Han, Z.; He, Z.; Hu, J.; et al. Review of Advanced Road Materials, Structures, Equipment, and Detection Technologies. Journal of Road Engineering2023, doi:10.1016/J.JRENG.2023.12.001.
12. Xia, X.; Pan, X.; Li, N.; He, X.; Ma, L.; Zhang, X.; Ding, N. GAN-Based Anomaly Detection: A Review. Neurocomputing2022, 493, 497–535, doi:10.1016/j.neucom.2021.12.093.
13. Dhinesh Kumar, R.; Chavhan, S. Shift to 6G: Exploration on Trends, Vision, Requirements, Technologies, Research, and Standardization Efforts. Sustainable Energy Technologies and Assessments2022, 54, doi:10.1016/j.seta.2022.102666.
14. Geng, Q.; Deng, S.; Jia, D.; Jin, J. Cross-Domain Ontology Construction and Alignment from Online Customer Product Reviews. Inf Sci (N Y)2020, 531, 47–67, doi:10.1016/j.ins.2020.03.058.
15. Wei, Z.; Wang, Z.; Zhang, J.; Li, Q.; Zhang, J.; Fu, H.Y. Evolution of Optical Wireless Communication for B5G/6G. Prog Quantum Electron2022, 83, doi:10.1016/j.pquantelec.2022.100398.
16. Cappelli, M. Nuclear I&C Systems Current Trends and Future Challenges. Instrumentation and Control Systems for Nuclear Power Plants2023, 1009–1028, doi:10.1016/B978-0-08-102836-0.00013-8.
17. Bandyopadhyay, A.; Mitra, I.; Goodman, S.B.; Kumar, M.; Bose, S. Improving Biocompatibility for next Generation of Metallic Implants. Prog Mater Sci2023, 133, doi:10.1016/j.pmatsci.2022.101053.
18. Sarker, S.; Jamal, L.; Ahmed, S.F.; Irtisam, N. Robotics and Artificial Intelligence in Healthcare during COVID-19 Pandemic: A Systematic Review. Rob Auton Syst2021, 146, doi:10.1016/j.robot.2021.103902.
19. Wu, T.; Yang, Z. Animal Tumor Medical Image Analysis Based on Image Processing Techniques and Embedded System. Microprocess Microsyst2021, 81, doi:10.1016/j.micpro.2020.103671.
20. Shrivastava, P.; Naidu, P.A.; Sharma, S.; Panigrahi, B.K.; Garg, A. Review on Technological Advancement of Lithium-Ion Battery States Estimation Methods for Electric Vehicle Applications. J Energy Storage2023, 64, doi:10.1016/j.est.2023.107159.
21. Gopinath, M.; Sethuraman, S.C. A Comprehensive Survey on Deep Learning Based Malware Detection Techniques. Comput Sci Rev2023, 47, doi:10.1016/j.cosrev.2022.100529.
22. Zhang, J.; Lin, G.; Vaidya, U.; Wang, H. Past, Present and Future Prospective of Global Carbon Fibre Composite Developments and Applications. Compos B Eng2023, 250, doi:10.1016/j.compositesb.2022.110463.
23. Casini, M. Advanced Digital Design Tools and Methods. Construction 4.02022, 263–334, doi:10.1016/B978-0-12-821797-9.00009-X.
24. Garrido-Momparler, V.; Peris, M. Smart Sensors in Environmental/Water Quality Monitoring Using IoT and Cloud Services. Trends in Environmental Analytical Chemistry2022, 35, doi:10.1016/j.teac.2022.e00173.
25. Byrne, G.; Dornfeld, D.; Denkena, B. Advancing Cutting Technology. CIRP Ann Manuf Technol2003, 52, 483–507, doi:10.1016/S0007-8506(07)60200-5.
26. Bakshandeh, A.; Nagamine, T.; Saxena, M.; Chettipally, U.; Khanna, A.K.; Maheshwari, K.; Rumsfeld, J.S.; Arnaout, R.; Chen, C.; Wetzel, R.C.; et al. Artificial Intelligence in Subspecialties. Intelligence-Based Medicine: Artificial Intelligence and Human Cognition in Clinical Medicine and Healthcare2020, 267–396, doi:10.1016/B978-0-12-823337-5.00008-1.
27. Danys, L.; Zolotova, I.; Romero, D.; Papcun, P.; Kajati, E.; Jaros, R.; Koudelka, P.; Koziorek, J.; Martinek, R. Visible Light Communication and Localization: A Study on Tracking Solutions for Industry 4.0 and the Operator 4.0. J Manuf Syst2022, 64, 535–545, doi:10.1016/j.jmsy.2022.07.011.
28. Alimam, H.; Mazzuto, G.; Tozzi, N.; Emanuele Ciarapica, F.; Bevilacqua, M. The Resurrection of Digital Triplet: A Cognitive Pillar of Human-Machine Integration at the Dawn of Industry 5.0. Journal of King Saud University - Computer and Information Sciences2023, 101846, doi:10.1016/j.jksuci.2023.101846.
29. Li, L.; Zhang, Y.; Lv, Y.; Qu, F.; Ma, Q. Emerging Native Orbitrap Mass Spectrometry for Probing Higher-Order Structures of Proteins: Recent Progress and Applications. TrAC Trends in Analytical Chemistry2023, 117424, doi:10.1016/j.trac.2023.117424.
30. Gheewala, S.; Xu, S.; Yeom, S.; Maqsood, S. Exploiting Deep Transformer Models in Textual Review Based Recommender Systems. Expert Syst Appl2024, 235, doi:10.1016/j.eswa.2023.121120.
31. Innovative Machining Fusion: Conventional Meets Next-Gen Precision - Search | ScienceDirect.Com Available online: https://www.sciencedirect.com/search?qs=Innovative%20Machining%20Fusion%3A%20Conventional%20Meets%20Next-Gen%20Precision (accessed on 16 December 2023).
32. Abstracts. The Journal of Molecular Diagnostics2022, 24, S1–S154, doi:10.1016/s1525-1578(22)00284-7.
33. McDonald, P. It’s Time for Management Version 2.0: Six Forces Redefining the Future of Modern Management. Futures2011, 43, 797–808, doi:10.1016/j.futures.2011.05.001.
34. Du, Y.L.; Yi, T.H.; Li, X.J.; Rong, X.L.; Dong, L.J.; Wang, D.W.; Gao, Y.; Leng, Z. Advances in Intellectualization of Transportation Infrastructures. Engineering2023, 24, 239–252, doi:10.1016/j.eng.2023.01.011.
35. Şahin, S.; Mehmet Şahin, H. Nuclear Energy. Comprehensive Energy Systems2018, 1–5, 795–849, doi:10.1016/B978-0-12-809597-3.00122-X.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Upinder Singh Singh, Karan Paul (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an Open Access article distributed under the terms of the https://creativecommons.org/licenses/by/4.0/
permitting all use, distribution and reproduction in any medium provided the work is properly cited.
Deprecated: json_decode(): Passing null to parameter #1 ($json) of type string is deprecated in /home/u528617106/domains/jisejournal.com/public_html/plugins/generic/citations/CitationsPlugin.php on line 68


